
AD-A249 362
*U1(UAI!DI C

LECTE
APR 28 1992D

Scheduling Multiple
Variable-Speed Machines

by

Michael -A. Trick*

April, 1990
Revised October, 1990;

November 1991

Carnegie Mellon University
PITTSBURGH, PENNSYLVANIA 15213

This document* has boon approvedI crpblcreesead oe; its

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION
WILLIAM LARIMER MELLON, FOUNDER

92-09784

9 2 4 1-,t 12 7

Management Sciences Research Report No. MSRR 578

DTIC
ELECTE

Scheduling Multiple 3 APR 2 8 1992 1
Variable-Speed Machines D

by

Michael A. Trick

April, 1990
Revised October, 1990;

November 1991

Graduate School of Industrial Administration
Carnegie Mellon University
Pittsburgh, PA 15213

This document has been opproved
for public release and sale; its
distribution is unlimited.

This report was prepared as part of the activities of the Management Science
Research Group, Carnegie Mellon University, under Contract No. N00014-85-K-0198
NR 047-048 with the Office of Naval Research. Reproduction in whole or In part
is permitted for any purpose of the U. S. Government.

Management Sciences Research Group
Graduate School of Industrial Administration

Carnegie Mellon University
Pittsburgh, PA 15213

SCHEDULING MULTIPLE VARIABLE-SPEED MACHINES

MICHAEL A. TRICK
CARNEGIE MELLON UNIVERSITY, PITTSBURGH, PA

April, 1990; Revised October, 1990; November 1991

ABSTRACT. We examine scheduling problems where we control not only the as-
signment of jobs to machines, but also the time used by the job on the machine.
For instance, many tooling machines allow control of the speed at which a job
is run. Increasing the speed incurs costs due to machine wear but also increases
throughput. We discuss some fundamental scheduling problems in this environ-
ment and give algorithms for some interesting cases. Some cases are inherently
difficult so for these we give heuristics. Our approach illustrates the exploitation of
underlying network structure in combinatorial optimization problems. We create
heuristics that optimally schedule a large portion of the jobs and then attempt to
fit in the remainder. This also gives a method for quickly finding valid inequalities
violated by the linear relaxation solution. For the problem of minimizing the sum
of makespan and production costs, a rounding heuristic is within a constant factor
of optimal. Our heuristics are compared to other, classical, heuristics.

Traditional sequencing and scheduling models assume that the time a job requires
on a machine is not under control: either the time is fixed, or it is a random variable
determined by outside forces. Some problems require not only the assignment of job
to machine but also the choice of processing time, reflecting physical capabilities of
the machines or extended possibilities in the model. In this paper, we examine some
optimally solved special cases and some heuristics in this environment, which we call 3

variable-speed scheduling.
One example of variable-speed machines occurs in the scheduling of tooling ma-

chines. Tooling machines take pieces of wood, plastic, or metal and, through cutting
and planing, make smaller pieces of the desired shapes and sizes. In such applica- -]
tions, tool wear is considerable. It is possible to decrease tool wear by running the O j
machines at lower speeds (shallower cuts, more planing passes) but this increases the
time spent by the piece on the machine.

A previous version of this paper was presented at the Conference on Integer Programming and -------------------

Combinatorial Optimization, Waterloo, 1990, and was contained in the proceedings

1

Statement A per telecon Dist Special

Lcdr Robert Powell ONR/Code 113D

Arlington, VA 22217-5000 IL L
NWW1 4/27/92

2 MICHAEL A. TRICK

This topic has begun to receive more attention due to its applicability to flexible
machine scheduling with variable-speed machines. Many articles have been written
developing methods for optimally cutting one piece on one machine. For a survey, see
Gray, Seidmann and Stecke (1988), with other papers being Phillipson and Ravindran
(1979) and Malakooti and Deviprasad (1989). Schweitzer and Seidmann (1989)(1991)
have examined models with many jobs and machines and have investigated nonlin-
ear cost functions and queuing effects. In another line of work, Daniels and Sarin
(1989) and Vickson (1980a)(1980b) develop algorithms for precedence constrained
single machine scheduling with a variety of optimality conditions with cost functions
that are linear in the processing time. In this paper, we also concentrate on lin-
ear cost functions (though all the results are applicable to piecewise-linear convex
cost functions). We concentrate on the fundamental problem of multiple machine
scheduling without precedence constraints.

In addition to solving an interesting and useful problem, a goal of this paper is
to illustrate the exploitation of embedded network structure in combinatorial opti-
mization. We choose a formulation of this problem that has a generalized network
problem as a linear relaxation. We can then find optimal solutions for the relaxation
very quickly. More importantly, the structure of the basis of the relaxations contains
an enormous amount of information. We can optimally schedule a large portion of
the problem, leaving just a few jobs to be rescheduled. Furthermore, we can use the
relaxation to heuristically reschedule the remainder. We also find violated inequalities
directly from the basis structure.

We look at two types of models. In the first, the capacitated machine model, the
capacity of each machine is fixed in advance. We have n jobs (indexed by j) and ?n
machines (indexed by i). The machines are not assumed to be identical, or otherwise
similar in characteristics. Each job must be assigned to the machines. If job j is
assigned to machine i, the maximum amount of time the machine will take is uij and
a nonnegative cost of cj is incurred. The job can take as little as lij units of time on
the machine. For each unit less than the maximum, a nonnegative cost of sij must
be paid. Machine i has bi units of time available. Each job is assigned to exactly one
machine, so the jobs are indivisible. The objective is to minimize the total cost.

In the second model, the makespan model, the amount of time available is not
known in advance. Instead, we are concerned with the tradeoff between makespan
(the maximum amount of time used by any machine) and operating costs. We assume
that the operating costs have been scaled so that the objective is to minimize the
sum of makespan and operating costs. The remainder of the problem is the same
as above. Lenstra, Shmoys and Tardos (1990) have examined this problem without
variable speeds and operating costs and have found a heuristic that is within a factor
of two of optimum. We extend their analysis to this more general case and give a
polynomial time heuristic that is within a factor of 2.6181 of uptimum.

We begin by giving algorithms for finding the optimal solution for one very simple

SCHEDULING MULTIPLE VARIABLE-SPEED MACHINES 3

cases: one capacitated machine. Although the algorithm is straightforward (it is
simply the greedy algorithm), the solution structure is used as a building block for
more difficult cases.

We then examine the multiple machine, indivisible job case for capacitated ma-
chines. The case where there is no flexibility in the machine speeds (i.e. lij = uij for
all i and j) is the generalized assignment problem. Because this problem is NP-hard,
the variable-speed problem is as well. In Trick (1991), we examine the linear relax-
ation of the generalized asbignment problem and find much structure. This leads to a
heuristic with good behavior, both theoretically and practically. In this case as well,
the linear relaxation provides a tremendous amount of information. We examine this
structure in some detail and provide a good heuristic for the variable speed schedul-
ing problem. We continue by finding violated valid inequalities for this problem that
can be used to find improved lower bounds.

We use some of these results in our examination of the makespan model. Here we
present a heuristic that is within a constant factor of optimum.

We conclude with computational results, comparing our heuristics with standard
greedy and savings-regret heuristics for this problem. Our heuristics are robust,
accurate, and fast.

1. SINGLE CAPACITATED MACHINE

We begin with the single machine case. A formulation of this problem is (in this
section we suppress the machine subscript i):

Minimize Zj(cj + sj(uj - xj))
Subject to

j xj < b
i xj < uj for all j.

The xj are interpreted as the amount of time spent by job j on the machine.
This problem is simply a linear knapsack problem with lower and upper bounds.

There is a very simple solution procedure. First, determine if the instance is feasible
by checking that the sum of the minimum times on the machine is no more than
the time available on the machine. If that is the case, we can assign every xj its
minimum value. Our objective is to assign the remaining time of the machine so as
to maximize our profit. The solution procedure is well known:

ALGORITHM Single Machine
Input: Single machine problem with n, cj, sj, ii, uj, and b.
Output: Optimal xj.

Step 0) Sort the items so that s, _ s2 s3 > ... > S,

Step 1) Let excess = b - Fj Ij, k = 1. If excess < 0, stop, problem is infeasible.
Stcp 2) If Uk - 1k <excess, go to step 4. Else go to step 3.

4 MICHAEL A. TRICK

Step 3) Let xk = uk, excess = excess -(uk - 1k), k = k + 1. Go to step 2.
Step 4) Xk = 1k+ excess, Xk = Ik' for all k' > k. Stop.

In this algorithm, all variables are set to their lower bound and then increased in
order of their variable costs. In the solution, every job except one is processed using
either its minimum time or its maximum time, and those that use their minimum
times are those that do the least harm to the machine.

Lemma 1 follows directly from this algorithm.

Lemma 1. For any optimal solution to the single capacitated machine problem, the
variables can be partitioned into three sets (any of which may be empty): A set U
of variables at their upper bound, a set L with values at their lower bound, and a
single variable j* with a value in between. Furthermore, sj >_ s j. > sk for any j E U
and k E L.

2. MULTIPLE CAPACITATED MACHINES

We now move to the multiple machine problem with indivisible jobs. One formu-
lation of this problem is:

(IPi)
Minimize Ei Ej cijzij + Zi Ej sij(uiiz - xii)
Subject to

j xij bi for all i,
ji zij - 1 for all j

lizi, < xi, < uijzij for all i,j,
xij > 0 for all i,j,
zij > 0 and integer for all ij.

The zij are interpreted as the fraction of job j assigned to machine i and x,, is
time job j spends on machine i. We assume that IP1 represents a feasible problem.
Practically, this can be guaranteed by adding an extra artificial machine with large
capacity and suitably large costs.

While the above formulation is adequate for using standard branch and bound
techniques, there is an alternative formulation that is more useful for our purposes.
In this formulation, we write the problem as a integer generalized network. In doing
so, we are able to take advantage of the underlying network structure to create good
heuristics.

Consider the following formulation (with variables yij and y'j):

(IP2)
Minimize i j cijy + Ei Ej(cij + sij(uij - lij))yij
Subject to

Ej(lijyij + uijy'j) !_ bi for all i,

SCHEDULING MULTIPLE VARIABLE-SPEED MACHINES 5

i (yij + y 3) = 1 for all j,
yij + y , E {0, 1} for all i, j,
yij, y>0 for all i,j.

(Note that the constraints yij + yij E {0, 1 } are not quite in standard form. We could
standardize by adding a new variable, but that will not be necessary.) The yij are
interpreted to be the fraction of job j using the minimum time on machine i and y',
the fraction -using the maximum time. Since a job using an intermediate time can
be thought of as some portion using the maximum time and the rest the minimum
time, the equivalence of IPI and IP2 is obvious.

The variable-speed scheduling problem as we have presented it is a difficult prob-
lem, as the following lemma shows:

Multiple Machine Variable-Speed Scheduling
GIVEN: Problem data: m, n, ci, sii, lij, u ii, bi and a goal value K.
QUESTION: Is there an assignment of jobs to machines and processing times to jobs
such that

(1) Each job is assigned to exactly one machine
(2) Each job has a processing time between its lower and upper values for that

machine,
(3) The total time on each machine is no more than bi, its capacity, and
(4) The total cost (fixed cost plus variable cost) is no more than K?

Lemma 2. Multiple Machine Variable-Speed Scheduling is NP-complete.

Proof. Given a candidate solution, it is easy to determine whether it satisfies the
above conditions, so the problem is in NP.

If lij = uji for all i and j, then the problem is the Generalized Assignment Problem,
which is NP-Complete by the reduction in Fisher, Jaikumar and Van Wassenhove
(1986), so our problem is also. n

By examining the reduction (from partition), it is also possible to show the follow-
ing corollaries.

Corollary 1. It is NP-complete to determine if an instance of the Multiple Machine
Variable-Speed Scheduling problem has a feasible solution.

Corollary 2. For any k > 1, unless P = NP, there is no polynomial time heuristic
for the Multiple Machine Variable-Speed Scheduling problem that is guaranteed to be
within a factor of k of optimal.

We are interested in the linear relaxations of IP1 and IP2. In IPI, the linear
relaxation is formed by removing the integrality restrictions on zij. We call the
resulting linear program LP1. Similarly, in IP2 we remove the integer restrictions on

6 MICHAEL A. TRICK

yij + y to form LP2. In the next section, we examine the structure of the optimal
solutions to LP2.

2.1. Linear Relaxation Structure. By working with LP2 rather than LPI, we
can get more information out of the structure of the optimal solution. Because each
variable appears in just two constraints (plus non-negativity), LP2 is a generalized
network problem (or network with gains and losses). The form of this generalized
network is illustrated in Figure 1. It is a bipartite graph with one side of the parti-
tion representing jobs and the other representing machines. It is a nmultigraph with
precisely two edges from each job-node to each machine-node.

(10-5)

(15,3)

bi

Supply
Capacity

1 : b2

(12,5)

Jobs Machines
(cost,multiplier)

FIGuRE 1. Generalized network for variable-speed problem

If we solve this generalized network problem with a simplex algorithm we will
find an optimal basis. A basis can be seen as a subgraph of the original generalized
network. This subgraph also has a particular structure. In particular, the arcs that
form the basis form a set of one-trees (trees with one extra edge), provided we treat
slack variables as degenerate cycles. From restrictions on the number and form of
basis cycles, it is easy to prove the following about the structure of any basic feasible
solution:

Theorem 1. The subgraph representing any basic solution to LP2 is a set of con-
nected components, where each component has exactly one of:

(I) a machine not used to capacity;

SCHEDULING MULTIPLE VARIABLE-SPEED MACHINES 7

(2) a job assigned to a machine using a time between its maximum and minimum;
or

(3) a cycle of length at least four nodes of alternating job-nodes and machine-
nodes.

Proof. Each of these form a basis cycle, and these are the only way to form a basis
cycle. As shown in Brown and McBride (1985), there is exactly one basis cycle per
component. El

We call a job using a time between its maximum and minimum time an intermediate
job. We call a job that is partially assigned to more than one machine a split job.
Such a job is incident to at least two machine-nodes in the basis, though not every
job incident to more than one machine-node is a split job (due to degeneracy). Based
on this theorem, there are a number of corollaries regarding basic solutions to LP2.

Corollary 3. For every basic feasible solution to LP2, the following hold:

(1) There is at most one intermediate job on any machine.
(2) Every job uses an intermediate time on at most one machine.
(3) If a machine has an intermediate job assigned to it, then the machine is used

to capacity.

Proof. If any of these did not hold then the conditions of Theorem 1 would be vio-
lated. El

Also, with methods similar to those used in Lenstra, Shmoys and Tardos (1990)
and Trick (1991), we can bound the number of split and intermediate jobs.

Corollary 4. The total number of split or intermediate jobs is no more than the
number of machines scheduled to capacity.

Proof. We prove this Corollary by associating each split or intermediate job with a
machine scheduled to capacity. Each machine scheduled to capacity is associated
with at most one job, so the Corollary follows.

Take a split job not on a basis cycle. Since it has degree at least two in the basis,
associate with it any machine node one further from the basis cycle. For any split job
on a basis cycle, orient the cycle arbitrarily (but consistently for every node on the
cycle). Associate with each split job the next machine node on the cycle. Finally, for
any intermediate node, associate it with the machine on which it uses an intermediate
size. Every split and intermediate job is now associated with a machine; no machine
is associated with more than one job; no machine not used to capacity is associated
with any job. 01

8 MICHAEL A. TRICK

2.2. A linear relaxation based heuristic. We now address the problem of finding
a good heuristic for the integral restricted problem. One approach is to use the results
from the previous section as a starting point. We know by Corollary 4 that if there
are a large number of jobs and a small number of machines then almost all jobs are
assigned to one machine each. By Corollary 4, at most ?n jobs are split jobs. This
leaves us just a small number of jobs to schedule.

One approach to this rescheduling is to use the linear relaxation on the remainder.
It is important to ensure that we co not cycle, generating the same solution over
and over. We can do this by modifying the instance in a way that keeps the integer
program the same, but changes the linear relaxation.

Consider a job j and machine i. If the upper bound uij > bi, then clearly we call
reduce uij to bi without changing the integer program. Furthermore, if the resulting
upper bound is less than the corresponding lower bound, then the variable call be
deleted altogether. This process does change the linear relaxation, however. We call
this process variable reduction, or reduction for short.

Theorem 2. For any basic solution (yij,Y j) to LP2, if all variables for jobs uniqudy
assigned to a machine are fixed and at least one unfixed variable remains then at least
one variable can be reduced relative to the resulting problem.

Proof. Call (i,j) a partial assignment if 0 < yij + yi < 1. Consider the places of
the partial assignments in the basis. There are two possibilities: either there exists
a partial assignment not on a basis cycle, or all partial assignments are on the basis
cycles.

Suppose there is at least one partial assignment not on the basis cycle. Consider
a partial assignment (i,j) that is maximally distant (when measured in number of
edges) from the basis cycle for its component. Note that i must be further from the
cycle than j is and that i is otherwise incident to uniquely assigned nodes. Also,
since i is not on the cycle, it must have no remaining capacity relative to the basic
solution. Therefore, once the uniquely assigned jobs are fixed, the remaining capacity
of the machine is exactly the flow on arc (i,j) times the size associated with (i,j).
The first value is less than 1, since it is a partial assignment. The second is at most
the maximum size of j on i. Therefore the resulting machine capacity is less than
the maximum size of j on i.

Suppose all partial assignments are on the basis cycles. All partial assignments
must then be part of basis components that satisfy condition 3 of Theorem 1. Con-
sider any component with a partial assignment on its basis cycle. If the flow on any
edge of the basis cycle is 0 then remove that edge from the basis, reroot the result-
ing tree at any machine-node, and apply the previous argument. We can therefore
assume that all edges on the basis cycle have nonzero flow.

Consider a machine node i on such a cycle. By Theorem 1, we know that i is
scheduled to capacity. Let j and k be the job-nodes incident to i on the cycle and

SCHEDULING MULTIPLE VARIABLE-SPEED MACHINES 9

suppose the size corresponding to the basic variable between j and i (either uij if
ij is basic or lij if yij is basic) is no more than that between k and i. No other

job incident to i can be a split job (because otherwise it would not be on the cycle,
leading to the previous case). If the incident flow values sum to less than 1, then
the new capacity of i will be strictly less than the maximum size of k (since it is a
combination of two numbers no more than the maximum size of k, and the weights
sum to less than 1). If the incident flow is more than 1, then there exists a node on
the cycle with incident flow less than 1. Finally, if the incident flow equals 1 for all
machine nodes around a cycle, then either there exists a machine node where the size
of j is strictly less than the size of k or j and k have the same size for all machine
nodes. In the former case, the new capacity of the machine is less than the maximum
size of k. In the latter, the basis does not represent a linearly independent set. 0

This gives us a heuristic for this problem: fix all the values for jobs that are not
split, reduce the variables, and resolve the linear relaxation. More formally, the
heuristic is:

ALGORITHM LR-Heuristic
Input: Variable-speed problem, with n, m, bi, lij, uij, cij, and sij as defined in the
text.
Output: Heuristic solution y, y'.

Step 0) Reduce all variables. If no variable remains, then go to Step 3.
Step 1) Solve LP2 to get solution y, y'.
Step 2) For each job assigned to a unique machine, fix the corresponding variables,

delete the job from the problem, and update the machine capacities. Go to step 0.
Step 3) Given the machine assignments, optimally schedule the individual machines

using the single machine algorithm. Stop.

A naive analysis gives roughly mn executions of step 1 of LR-Heuristic. This can
be decreased by the following observation.

Theorem 3. Step I of LR-Heuristic is executed at most m + 1 times.

Proof. We know from the previous theorem that a new variable gets reduced each
iteration. In order for a variable to get reduced, it was necessary that at least one
job be scheduled. After the first iteration, only m jobs remain to be scheduled. []

This approach has many advantages over other heuristics. First of all, the initial
generalized network gives a lower bound on the solution, so there are bounds on
the deviation from optimality. Second, the relaxation can be solved very effectively
with the generalized network simplex method (Brown and McBride, 1985; Nulty and

Trick, 1988), so a solution can be found very quickly. If polynomiality is required,
the results of Khachian (1979) and Gr6tschel, Lov~sz and Schrijver (1988) suffice to
show the polynomiality of solving LP2.

10 MICHAEL A. TRICK

One disadvantage of this approach is that Theorem 2 requires fixing the size as
well as the assignment of jobs. It would be better to only fix the assignment (the
integer variable) and leave free the size (the continuous variable). It is not possible
to ensure a reduction in this case, however. It is possible to check for what might be
called a strong reduction: a reduction that occurs even if all variables take on their
minimum size. In cases when a strong reduction prevents cycling, it is better to do
only the strong reduction, fixing the assignments but not the sizes. Only when no
strong reduction is available is the regular reduction done.

It is not possible to bound the deviation from optimality for this heuristic for a
general cost function, nor could we for any polynomial heuristic unless P = NP by
Corollary 2. One important note, however, is that this heuristic may be unable to
assign jobs to machines, even when the instance is feasible (this is not surprising,
due to Corollary 1). Fortunately, we can bound the number of such jobs. From
Corollary 4 it is clear that the difference between the optimal number scheduled and
the number the heuristic schedules is no more than m. We can reduce this slightly.

Theorem 4. For any instance where LPI is feasible, LR-Heuristic fails to schedulf
no more than m - 1 jobs.

Proof. It is possible to show that one variable doesn't become reduced, so at least one
variable can be scheduled in the second iteration. See Trick (1991) for details. 0

2.3. Violated Valid Inequalities. In the previous section, we showed how to use
the linear relaxation solution to find good, heuristic, solutions. In this section, we
show how to use the structure of the basis to improve the lower bound. In particular.
we show how to generate a violated inequality directly from the relaxed solution.

The formulation in IP1 is a fixed cost network flow problem with lower and upper
bounds. Van Roy and Wolsey (1986) have examined such problems and have devised
some valid inequalities. We show that one of the classes they present must have a
member that is violated by the linear relaxation. Furthermore, the violated member
is easy to find. This gives us the first step in a cutting plane algorithm: we can
solve the relaxation and add a first set of cuts. After adding those cuts, however, we
cannot iterate, for the resulting problem does not have a generalized network basis
structure.

Consider a machine i and a subset J of jobs, partitioned into J, and J2 (either
may be empty) such that

Z: 4i + E ui3 = bi + A
lEd, jEJ2

with A > 0. We call such a pair (ji,j2) a generalized flou cover (this is a specialization
of the generalized flow cover of Van Roy and Wolsey). Let (a)+ be a if a > 0 and 0
otherwise.

SCHEDULING MULTIPLE VARIABLE-SPEED MACHINES 1I

Theorem 5. If (JI, J2) is a generalized flow cover for machine i, then the inequality

Z (x,1 + (uij - A)+(1 - zi1)) + E ((lij - A)+ + min(li3 , A)zij) < bi
jEJ2 jEAi

is a valid inequality for the variable-speed scheduling problem.

Proof. This is Corollary 3 of Van Roy and Wolsey (1986) with C2 = 0. EJ

What makes this special case particularly interesting is that there is a constraint
of this class for every reduced assignment found in Theorem 2.

Theorem 6. For any basic solution of LP1 (LP2), if the solution is not feasible
for IP1 (IP2) then there exists a violated inequality from the class of inequalities in
Theorem 5.

Proof. Consider a solution to LP1, with xij representing flow and the zij denoting
the fraction of assignment (i,j) used. Note that we can generate this solution from
the solution to LP2 by setting zij = yij + yi- and xi = lijyi + jy

By Theorem 2, we know that there exists at least one variable (i,j*) that can
undergo variable reduction. Every variable identified by Theorem 2 has the following
structure: the size of jobs uniquely assigned to the machine (all at either their min-
imum size or maximum size) plus either lij. or uij. (depending on which is basic) is
more than bi. To see this, suppose the variable to be reduced is not on a basis cycle.
Then, by our choice, all other jobs assigned to the machine are non-split, and the
result follows. If the variable to be reduced is on the cycle, then the machine may be
incident to one other split-job, say k*. But we chose to reduce the variable so that
even if we decrease the value on (i, k*) to 0, we are unable to increase the variable
on (i,j*) to 1. In either case, if you take J, to be all variables at their lower bounds
(including j* if yij. is basic) and J2 be those at their upper bounds (including j* if
yj. is basic), then (J1 , J2) is a generalized flow cover.

Now, examine the valid inequality in Theorem 5 with respect to the linear relax-
ation solution. Suppose j* E Ji. Since for all j E J1 \j* U J2 , zi = I, the left hand
side reduces to:

E xii + E lij + (lij. - A)+ + min(A, lij.)zi,..

JEJ2 jEJi\j*

Clearly li. > A since all of J1 UJ2\j* fits on machine i but J, UJ 2 does not. Therefore,
the sum becomes:

E uii + E lij + (lij. - A) + Azij.
jEJ2 JEJi\J*

Note, however, that

12 MICHAEL A. TRICK

JEJ2 jEJI \j*

by the definition of A (this is true whether the partial assignment is on or off the basis
cycle), and that our proof for Theorem 2 always reduces a variable with yij + y9- > 0.
Thevrefore the left hand side has value more than bi, as was required.

The case where j* E J2 is similar. fl

Therefore, we can quickly find a valid inequality that the linear relaxation solution
violates. We can then add this constraint to LP2 (doing the necessary variable
substitutions) and resolve. Except in degenerate cases, this improves our lower bound.

The above theorem corresponds to regular reduction. There is a stronger constraint
that corresponds to strong reduction when the corresponding variable is deleted (since
the upper bound is less than the lower bound). In this case, we have identified a set
of variables S such that even if all variables are at their lower bound, the total size
is too large for the machine. Therefore we can generate the constraint

1-, < Is - I
jES

which will be violated and, in general, will be stronger than the constraints ill The-
orem 5. As stated in the previous section, however, strong reduction is not always
available.

These constraints are not enough to create a cutting plane algorithm. Once we add
the constraints, the generalized network structure of the problem is lost, so we can not
repeat the process. It may be that the first round of cuts is sufficient to strengthen
the lower bound, particularly if the cuts are lifted or otherwise strengthened (see
Nemhauser and Wolsey (1988) for a survey on strengthening cuts).

3. THE MAKESPAN MODEL

We now turn to the case where we have uncapacitated machines and indivisible
jobs and we wish to minimize the sum of the makespan and the operating costs. For
the case in which there are operating costs but all the speeds are fixed, we create a
polynomial time heuristic that is within 2.618 of optimal. For the case in which there
are operating costs and variable speeds, we give a heuristic that is within 2.618 + c
for any fixed epsilon. The heuristic is polynomial in the size of the problem and in C.
Although our latter computational results suggest that this heuristic is not likely to
be useful in practice, it is important to notice that this heuristic shows that getting
a constant bound is achievable. It was not until the work of Lenstra, Shmoys and
Tardos (1990) that a constant bound was found for the case of fixed speed machines
without operating costs. This result extends their result.

The problem we wish to solve is IP3.

SCHEDULING MULTIPLE VARIABLE-SPEED MACHINES 13

(1P3)
Minimize k + i ,j ci2zi3 + Ej sii(ujzij - Xij)
Subject to

Ej ij < k for all i,
Ei zij = 1 for all j
lijzij !_ xij !u uijZi for all i,j,

xij > 0 for all i,j,
z% > 0 and integer for all i,j.

Let LP3 denote the linear relaxation of this problem.
First note that if we fix k then we get a problem in the form of IPI, which we denote

IPl(k). Also note that without altering the optimal integer solution to IPl(k), we
can reduce the maximum time allowed for a job on a machine down to the value
k. Furthermore, if this value is less than the minimum amount of time for that
job on that machine, we can delete that assignment completely. Call this process
reduction (note that this process is identical to the reduction process in section 2).
Let LPI(k) denote the linear relaxation to IPl(k) after reduction. Let f(k) be the
value of optimal solution to LPl(k). If the linear relaxation has no feasible solution,
set f(k) = 00.

There are two steps in creating a heuristic solution within a constant factor of
optimality: first we need to find a k such that f(k) + k is either a lower bound on
the optimal value of IP3 or is no more than a constant factor above the value of IP3.
Then we need to find a feasible integer solution that does not increase the objective
by more than a constant factor. The following theorem handles the second of these
tasks.

The fundamental tool we use is called b-roundoff. Consider any basic feasible
solution to LPl(k) and any 0 < b < 1. Give each basis cycle an arbitrary orientation.
For any job j, we define the associated machine for j to be the unique machine incident
(in the basis graph) to the job that is closer to the basis cycle, or, if the job is itself
on the basis cycle, the machine incident by the arbitrary orientation of the basis
cycle. The set of all other machines incident to j in the basis graph are the auxiliary
machines. b-roundoff is defined as follows:

For each job j, if j has more than b assigned to any machine, then completely
assign j to that machine. This is called a large assignment. Otherwise, completely
assign j to its cheapest auxiliary machine (giving a small assignment).

Theorem 7. For any basic feasible solution to LPI(k*) with objective value f(k*)
and any 0 < b < 1, it is possible to find in polynomial time a solution to IP3 with
objective no more than max{1/6, 1/(1 -)}ff(k*) + (1 + 1/6)k*.

Proof. We prove this by analyzing the effect of large and small assignments separately.

14 MICHAEL A. TRICK

Consider the effect of a large assignment. The size of that job increases by a factor
of at most 1/8. The cost increases by the same factor. Therefore, the total effect of
all large assignments is an increase in cost and makespan of a factor of 1/5. During
a small assignment, the cost increases by a factor of at most 1/(l - 6). The size may
go up (absolutely) by as much as k*, since no arc has size more than that. But each
machine is only assigned one small assignment, so the effect of all small assignments
is to increase cost by a factor of 1/(I - 6) and to increase the makespan by k*.
Therefore, total size on any machine is at most (1 + I/6)k and the cost has increased
by a factor of no more than max{1/6, 1/(l - 6)1.

This analysis is summarized in Table 1. All values are the factor increase, except
the increase in makespan for a small assignment which is an additive value.

Type of Assignment Increase in Makespan Increase in Cost
Large 1/6 1/6
Small +k*1/(1 -6)

TABLE I. Summary of Analysis

El

Let 0 = (1 + /5)/2 ; 1.618.

Corollary 5. For any basic solution to LP1(k*) with objective value f(k*), it is
possible to find in polynomial time a solution to IPS with objective no more than
(1 + 0)(k* + f(k*)) ,t 2.618(k* + f(k*)).

Proof. The maximum value for the bound in Theorem 7 can be found by setting the
makespan increase equal to the cost increase. Setting 6 = (- 1) gives the required
bound. El

The following result is shown in Lenstra, Shmoys and Tardos (1990). This corollary
shows that their result is a special case of Theorem 7.

Corollary 6. If there are no operating costs, then for any basic solution to LPI(k)
it is possible to find in polynomial time a solution to IP3 with objective no more than
2k*.

Proof. In the proof of Theorem 7, it is permissible to set 6 = 1 if f(k*) = 0. This
then gives a bound of 2k*. El

This analysis is tight, in the sense that for any 6 there exist instances where 6-
roundoff increases the objective by the amount given in Theorem 7. The instances
are given in Appendix A.

The next step is to determine a suitable k. If we did not reduce any processing
times, then f(k) would be convex, and we could use standard nonlinear programming
techniques to minimize f(k) + k to get a true lower bound. Since we do reduce the

SCHEDULING MULTIPLE VARIABLE-SPED MACHINES 15

processing times, however, (and need to in order to get a constant bound) we need
to use another method.

Our method is to divide the range of k up into intervals where the feasible arcs
remain constant. We then solve the problem within each interval and take the best
of those solutions.

Note that if u* denotes the maximum time any job can take on any machine, then
nu* is an upper bound on the makespan in any optimal solution. Also, we can assume
that all of the maximum and minimum times on a machine are integer by scaling the
problem if necessary. In this case, we can prove the following result.

Lemma 3. There exists an optimal solution to IP3 with integral k < nu*.

Proof. The only difficulty is in proving k integral. We prove this claim by showing
that there exists an optimal solution to IP3 such that there is a machine i with every
job assigned to that machine using either its minimum or its maximum time. Let
(X', z', k') represent an optimal solution to IP3. Consider the set S of machines used
to capacity by this solution. If any machine in S does not contain an intermediate
job (one with lij < xij < uij), then k' must be integral. By the results Lemma 1,
there exists at most one job on a machine at intermediate time, so each machine in
S has exactly one intermediate job. For each i E S, let j(i) denote the intermediate
job on i.

Let c = minics{ufti() - Xii(i)} and note that E > 0. Consider increasing k' and each
of the corresponding intermediate xij(i) for all i E S by c. By the definition of f, this
gives a feasible solution, and the objective changes by some value Af, which must
be nonegative by the optimality of (x', z', k'). Now consider decreasing k' and each
of the xij(i), i E S by a small amount S. Since all machines not in S are not used to
capacity, there must be a suitably small b so that the resulting solution is feasible.
The objective now changes by -AS, which also must be nonnegative. Therefore,
A = 0. Therefore, increasing k' by f results in an alternative optimal solution where
one machine used to capacity has no intermediate jobs. This alternative optimum
has integral makespan. D

Let us begin with the case where, for each job and each machine, the maximum
time for the job on the machine equals the minimum time. In this case, if we reduce
the processing times for any job, we delete the assignment completely. In this case,
we can find a k such that f(k) + k is a lower bound on the value of IP3.

The key is to divide the feasible region for k into intervals where the set of feasible
assignments is constant. This is done in Algorithm Fixed-Find-k.

ALGORITHM Fixed-Find-k
Input: An instance of the makespan model, IP3, with lij = uij for all i and j.
Output: A value k* such that f(k*) + k* is a lower bound on the optimal value for
IP3.

16 MICHAEL A. TRICK

Step 0) k* = 0.
Step 1) For each I <i<nand 1 <j <ndo

Add the constraint k > lij to LPI(llj)
Solve to get optimal k value, k'
If f(k') + k' < f(k*) + k*, set k* = k'.

Step 2) Stop.

Lemma 4. Algorithm Fixed-Find-k returns a k* such that f(k') + k* is a lower
bound on the optimal solution value to IP3.

Proof. Consider any optimal solution (x', z', k) to IP3, and let t' denote the largest
value for lij with ='j 1. Now consider LPI(t'). Note that all arcs with positive z'
represent feasible arcs in LPI(e'). Furthermore, k' > ' since the makespan cannot
be any less than the length of any assignment used. Therefore, (x', ', k') is a feasible
solution to LPI(e'), so the optimal solution to that problem must be a lower bound.
This implies that the minimum over all LPI(lij) must also be a lower bound. D

Theorem 8. There exists a polynomial time heuristic for the fixed processing time
problem with worst case bound 1 + 0 ; 2.618.

Proof. By Lemma 4, it is possible to find a k* for which f(k*) + k" is a lower bound
on the optimal solution to IP3. To do so, O(mn) linear programs must be solved.
By the results of Khachian (1979) and Gr6tschel, Lovisz and Schrijver (1988), it is
possible to find an optimal basic solution to a linear program in polynomial time, so
we can find k* in polynomial time.

Using Lemma 7, we then get the desired bound. D

We can now address the case of general processing times. The difficulty with using
the above argument is that maximum times on a machine must also be reduced, but
it is impossible to know by how much until the makespan is determined. To solve
this problem, we will find a solution that is not a lower bound itself, but is not too
much bigger than the optimal solution.

Fix a value a > 1. The following algorithm will find a solution that is no more
than a factor of a larger than the optimum.

ALGORITHM Variable-Find-k
Input: An instance of the makespan model, IP3. A fixed value a > 1.
Output: A value k* such that (f(k*) + k*)/a is a lower bound on the optimal value
for IP3.

Step 0) k* = 0.
Step 1) For each integral p such that 0 < crP < anu*

If f(aP) + ao < f(k*) + k*, set k* = aP.
Step 2) Stop.

SCHEDULING MULTIPLE VARIABLE-SPEED MACHINES 17

Lemma 5. Algorithm Variable-Find-k returns a k* such that (f(k*) + k*)/a is a
lower bound on the optimal solution value to IP3.

Proof. Let (x', z', k) be an optimal solution to IP3, and let p be such that aP- 1 <
k' < aP. By Lemma 3 such a p exits. Let the cost for the optimal solution be split
into k' (the makespan) and C' (the operating costs).

Now consider f(aP) + a P. Since a P > k', C' > f(aP). Also, by our choice of p,
aP < ak'. Combining these we see that f(aP) + a P < C' + ak' < aC' + ak'. This
implies that k* gives a solution within a factor of a, as required. l]

Theorem 9. For any a > 1, there exists a polynomial time heuristic for the variable
speed problem with a worst case factor of a(1 + 0) ;: a2.618.

Proof. The number of feasible p in step 1 of Variable-Find-k is O(log, nu*). For fixed
a, the base to which the logarithm is taken does not affect the overall complexity.
Therefore, a polynomial number of linear programs must be solved.

By Theorem 7, we can round the solution for k*, increasing its value by at most a
factor of 1 +(1 + v/5)/2. This gives a total bound of a(1 +(1 + Vf)/2), as needed. 12

This gives a worst case ratio limit of 1 + 0 . 2.618. Lenstra, Shmoys, and Tardos
show that if there are no operating costs and no choice in the operating speed then
no polynomial algorithm can have a worst case bound of 1.5 (unless P = NP). This
bound naturally holds for this more general problem, leaving a gap between 2.618
and 1.5 as the best possible approximation algorithm.

4. COMPUTATIONAL RESULTS

In this section, we present computational results for both the capacitated machine
model and the makespan model. Our heuristics are fast, robust, and accurate.

4.1. Capacitated Machines.

4.1.1. Other Heuristics. Solving the linear relaxation is only one heuristic for the
multiple capacitated machine problem. In this section, we will outline two other
heuristics that form the base of our computational tests.

Because we know an optimal method for single machines, we can simply search for
assignments of jobs to machines. One we have an assignment of jobs to machines,
we can apply our single machine algorithm to determine the optimal speeds. The
difficulty is in the assignment of jobs to machines.

The first heuristic is a greedy heuristic. Assume we have an arbitrary ordering
of the jobs (here denoted 1,2,... , n, but in general a permutation of this set). We
divide the problem into n stages, where the subproblem to solved at stage j is the
assignment of the jth job, given the assignment of jobs 1 through j - 1.

We solve the subproblem in the most straightforward way: during stage j, we de-
termine the cost of assigning j to each machine i in turn. We assume the assignments

18 MICHAEL A. TRICK

(though not the sizes) of I up to j - I are fixed, and no job after j is considered. The
job is then assigned to the machine that gives thE minimum total cost.

Clearly, this is a very simple-minded heuristic. Jobs that appear early in the
sequence ignore those that appear later, so assignments are made as though the
machine is not filled to capacity. Jobs that appear late in the sequence might have
to use very expensive machines in order to satisfy feasibility. One advantage of this
heuristic, however, is that different orderings of the jobs lead to different solutions.
This heuristic is good for generating many different solutions.

Our second heuristic attempts to handle the problem of jobs being left with only
one expensive machine. Here there is no ordering of jobs. The jobs are assigned
to machines one at a time. The job to be assigned is chosen by determining the
maximum regret for not being able to use its best machine. The regret is defined to
be the difference in costs between assigning it to its best machine and assigning it to
its second best machine. The costs are determined by assuming that all previously
assigned jobs are fixed and all unassigned jobs are irrelevant.

This heuristic still ignores the congestion that results from later assignments, but it
does try to identify jobs that have just one attractive machine available. The solution
found by this heuristic is teried the savings-regret solution.

Once we have a solution, there are a number of ways we might improve on it. For
instance, job j might be assigned to machine i but moving it to machine i' decreases
the total cost. Such a move is called a 1-exchange. Or it may be that switching
j and j' decreases cost. Such a switch is a 2-exchange. We can generalize this to
k-exchanges for arbitrary k, but 2-exchanges are sufficient for our purposes. Given a
solution, we can do 1- and 2-exchanges until no improvement is possible. This gives
a locally optimal solution.

4.1.2. Computational Results. In this section we present some computational results
which show how well the heuristics and lower bound techniques work. In general.
LR-Heuristic works very well on the problems we generate, but the violated valid
inequalities do not affect the lower bound much.

We generate random problems using a generator similar to that used in a number
of papers (Ross and Soland, 1975; Ross and Soland, 1977; Martello and Toth, 1981;
Fisher, Jaikumar and Van Wassenhove, 1986; Jacobs, 1987) for the generalized as-
signment problem (generators A and B). We choose a number of jobs and number
of machines. For each assignment, a fixed cost is randomly generated uniformly be-
tween 15 and 50. A minimum size is generated uniformly between 5 and 25. We also
generate a variable profit between 0 and 5, and a maximum size, generated between
0 and some given range above the minimum size. Finally we have an average target
size, and the capacity of each machine is set to the target size times the number of
jobs divided by the number of machines. All data are integer.

Our first test compares three heuristics: greedy, savings-regret, and LR-Heuristic,

SCHEDULING MULTIPLE VARIABLE-SPEED MACHINES 19

the heuristic based on the linear relaxation. For this test a target size of 15 (the
average minimum size on a machine) is fixed. The range of maximum sizes above
the minimum size is either 3 (narrow range), 10 (medium range), or 20 (wide range).
We test four sizes of problems: 20 jobs, 5 machines; 50 jobs, 5 machines; 50 jobs, 10
machines; and 100 jobs; 10 machines. Ten problems were run for each upper bound
range. The solutions for each heuristic were improved by 1- and 2-exchanges.

TABLE II. Percentage over Lower Bound

Without Improvement With Improvement
Jobs,Mach. Range Greedy Savings-Reg LR-Heur Greedy Savings-Reg LR-Heur

3 15.4 40.2 15.4 3.9 5.1 2.6
20,5 10 38.6 31.0 29.8 7.0 7.1 4.5

20 56.1 50.7 40.9 9.7 13.4 8.9

3 6.8 7.6 6.1 1.3 1.5 0.0
50,5 10 36.4 37.9 14.7 5.9 5.5 4.;3

20 46.1 43.2 32.9 9.8 10.1 8.1

3 13.9 8.7 8.0 5.0 2.5 1.2
50,10 10 25.7 24.5 70.0 6.3 7.6 5.3

20 51.3 43.3 95.4 10.3 10.9 8.4

3 7.9 6.9 7.9 1.7 1.6 0.5
100,10 10 28.3 23.9 28.2 5.9 5.9 4.1

20 51.2 52.0 62.6 10.9 10.0 8.8

3 6.4 5.3 3.8 1.0 1.0 0.4
200,10 10 32.6 29.9 15.8 4.6 5.1 3.7

20 56.5 55.7 35.8 9.9 10.4 8.8

Table II compares the solution quality generated by our heuristics both with and
without the improvment heuristics. Each entry represents the average pe-centage
above the lower bound (as generated by the linear relaxation). Clearly the heuristics
based on the linear relaxation together with the improvement heuristics do a good job.
In every instance type, this combination resulted in the best values. Furthermore, this
average performance is consistent across instances: of the 150 instances represented
in the table, LR-Heuristic with improvement had the best solution in 132 cases.

Figure 2 represents another way to compare the results. To make the numbers
roughly comparable across categories, the results are presented as a percentage of
the gap between the lower bound and the greedy solution (without the exchange
heuristics). In other words, if the raw greedy value was 50, and the lower bound was

20 MICHAEL A. TRICK

G Greedy *Savings Regret 0LR-Heuristic

40.00
C

E 30.00-
&CA

a20.00

a

LO C

FIUR 2. Coprio ofhuitc

L~

SCHEDULING MULTIPLE VARIABLE-SPEED MACHINES 21

25, a heuristic of value 30 would get value 20% (equals (30-25)/(50-25) * 100). This
measure, while slightly arcane, is independent of various data transformations that
keep the problem essentially the same. For instance, percentage above lower bound
changes if a constant is added to all the costs. The value used does not. Another
way to think about this measure is the following: suppose the current method for
solving this problem is to use the greedy heuristic without exchanging. This gives a
gap above the lower bound. The entry in the figure gives, for each size and degree
of size range, the percentage of gap remaining if the raw greedy heuristic is replaced
with the alternative heuristics (with exchanging).

TABLE III. Computation Time (sec.)

Without Improvement With Improvement
Jobs,Machines Greedy Savings-Reg LR-Heur Greedy Savings-Reg LR-Heur

20,5 0.0 0.0 0.6 0.0 0.2 0.8
50,5 0.0 1.2 1.0 2.9 3.2 2.5

50,10 0.3 2.5 1.9 3.2 4.3 4.1
100,10 0.5 14.2 4.1 17.2 36.3 17.8
200,10 0.9 106.3 10.3 205.2 221.7 149.1

Furthermore, while it is clear that solving generalized networks is a time consuming
task, the time required to do the exchanging is considerable. The average times for
each problem size (size range had no noticeable effect on computation time) are given
in table III. Times are in seconds on a Sun SPARC workstation.

The data structure used to store a solution consisted of a doubly linked list with
the jobs sorted in order of their variable cost. Despite this, it takes a tremendous
amount of time to do a 2-exchange. This is reflected in the high times for greedy
and savings-regret above. LR-Heur finds much better initial solutions so its overall
compuatation time is not as large.

The final test determines the effectiveness of the lower bounds generated. Cuts
were generated for all of the instances were added to the problem. The problem
was resolved using a linear programming package. In practice, a generalized network
with side constraints code (McBride, 1985) would be more efficient. Table IV gives
the results. Again, the entries in the table are given in terms of the percentage
over the lower bound. In order to aid in comparisons, the values for LR-Heuristic
with improvement are repeated in this table. It is clear that the lower bound is not
increased a lot.

Table IV also gives a comparison with the optimum integer values. For both of
the two smallest problem sizes, the optimum solution was found using branch and
bound. It seems that both the heuristic solution and the lower bounding techniques
have room for further improvement.

22 MICHAEL A. TRICK

TABLE IV. Cuts and Optimal (Percentage above lower bound)

Jobs,Machines Range LR-Heur Cuts Optimum
3 2.6 0.6 2.0

20,5 10 4.5 0.4 2.6
20 8.9 0.9 3.2

3 0.5 0.1 0.3
50,5 10 4.3 0.1 0.5

20 8.1 0.1 0.7

3 1.2 0.2 -

50,10 10 5.3 0.3 -

20 8.4 0.3 -

3 0.5 0.0 -
100,10 10 4.1 0.1 -

20 8.8 0.1 -

3 0.4 0.0 -
200,10 10 3.7 0.0 -

20 8.8 0.0 -

SCHEDULING MULTIPLE VARIABLE-SPEED MACHINES 23

4.2. Makespan and Operating Costs model. Our second major heuristic was
a guaranteed accuracy round off heuristic to minimize the sum of makespan and
operating costs. A natural question concerns the nature of the worst case bound
we get. Does the heuristic typically acheive the worst case or is the worst case
pathological in some sense?

To get a feel for the answer to this question, we have modified the generator from
the previous section to create instances of the makespan model. Jobs characteristics
are generated in exactly the same way as before. Rather than generating a machine
size, however, there is a a new parameter weight that gives the relative weight to be
assigned to makespan compared to operating costs. The objective value for makespan
is normalized to one; operating costs are then divided by the weight.

Problems were generated for the five problem sizes of the previous section. The
size range was fixed at the medium value 10. We tested three weight values: 1, 10,
and 50. In the routine Variable--Find-k, we set a = 2 so we have a worst case ratio
5.236. For each size and weight combination, ten instances were generated. After
finding the appropriate k value, two feasible solutions were generated: the first uses
the round-off rule given in Section 3; the second solution then fixes the makespan and
applies the 1- and 2- opting imprc,ement techniques of the previous section. Again,
for the two smallest sizes, the optimal integer solution was found using branch and
bound. The results are given in Table V.

From the table, it is clear that the worst case ratio is not a good estimate on how
well this heuristic will work in practice; in general the heuristic works much better.
As makespan receives more weight, the quality of the heuristic decreases. To further
explore this, more instances were generated for the 50 job, 5 machi ie problem and
many more weights were generated. This is illustrated in Figure 3. Again, each
data point represents the average of ten instances. It seems as though tile quality of
this heuristic is quite good as long as the makespan weight does not dominate tile
operating cost. Once the makespan weight is too large, however, then the heuristic
is consistently off by more than 70%.

5. CONCLUSIONS

We have examined an interesting generalization of standard multiple machine
scheduling: variable-speed scheduling. We have shown that the linear relaxation
solution contains a lot of information. Most jobs are assigned to oni5 one machine.
leaving just a small number to be rescheduled. Furthermore, it is possible to use the
linear relaxation to reschedule the rest. Also, it is possible to generate violated valid
inequalities from the optimal basis.

Limited computational tests suggest that the resulting heuristic gives good answers
consistently, and in a reasonable amount of time. Adding the violated constraints
does not increase the lower bound much.

24 MICHAEL A. TRICK

TABLE V. Empirical Ratios for Makespan Plus Operating Costs

Jobs,Machines Weight Round-Off Improvement Optimal
1 1.044 1.029 1.011

20,5 10 1.224 1.204 1.025
50 1.584 1.572 1.037

1 1.079 1.060 1.002
50,5 10 1.089 1.072 1.003

50 1.518 1.512 1.001

1 1.049 1.041 -

50,10 10 1.213 1.176 -

50 1.493 1.450 -

1 1.046 1.035 -
100,10 10 1.082 1.059 -

50 1.255 1.214 -

1 1.043 1.038 -
200,10 10 1.052 1.042 -

50 1.177 1.146 -

SCHEDULING MULTIPLE VARIABLE-SPEED MACHINES 25

0Round-Off Heuristic

S1.80
0

1.60-

0

C 1.20
0

1~ 0 0 00 00
5 65 65 o5 6

Weight Assigned to Makespan (Log Scale)

FIGURE 3. Solution Quality vs. Makespan Weight

26 MICHAEL A. TRICK

There are a number of other questions to answer for this problem and related
problems. First, it is clear that more testing is needed to determine the quality of
the heuristic. More sophisticated competitors can be devised.

Second, it is possible to combine the heuristic and the constraint generation in the
following iterative algorithm:

(Lagrangean Heuristic)

Step 0) Solve LP2.
Step 1) Find LR-Heuristic solution from current basis.
Step 2) Find violated valid inequality(ies) from current basis and add them to

current set of inequalities.
Step 3) Relax current set of inequalities by lagrangean relaxation (Fisher, 1985),

and go to step 1.

The loop can terminate with any standard terminating condition: time limits, itera-
tion limits, convergence, and so on.

Step 1 generates a series of feasible solutions; step 3 generates a series of lower
bounds. In general, due to the limited nature of the cuts we generate, we will soon
cycle. This is not too critical because solving a lagrangean relaxation each iteration
is a very expensive process so we do not wish to do many iterations. Ideally, however,
the (non-decreasing) lower bounds and the generation of many feasible solutions may
substantially decrease the duality gap.

Third, the violated valid inequalities are generated from one mixed integer con-
straint. It would be interesting to come up with other valid inequalities that come
from more than one constraint. Gottlieb and Rao (1990a)(1990b) have done this
for the generalized assignment problem; the variable-speed scheduling problem is a
natural generalization.

Finally, this whole approach suggests that integer generalized networks are an in-
teresting class of mixed integer programs. The network structure leads very naturally
to interesting relaxations and heuristics. Furthermore, there is enough structure to
make finding violated inequalities easier that for general mixed integer programming.

APPENDIX A. PROOF OF TIGHTNESS OF THEOREM 7

In this section we give instances that prove the tightness of the analysis in Theo-
remf 7.

Consider any 0.5 < 6 < 1 (the construction for 0 < 6 < 0.5 is similar). Let 6+ be
a value slightly larger than 6 and 6- be a value slightly smaller.

Consider the basis illustrated in Figure 4. The value on each edge represents the
basic flow. Suppose that all edges not drawn are infeasible due to reduction. The
cost on all arcs is zero, except for the arc connecting job 7 to machine F, which has
cost 1. The size for each assignment is not relevant, except for (2, C) which has size
equal to the current makespan.

SCHEDULING MULTIPLE VARIABLE-SPEED MACHINES 27

1

.10 A

B

2

c

3
- D

4

5

6

7
F

81

FIG;URE 4. Basis for Tightness

28 MICHAEL A. TRICK

6-Roundoff will assign jobs 3 and 4 to C by large assignments. If the associated
machine for 2 is B then 2 could be assigned to C by a small assignment (a small cost
can be applied to the assignment (2, A) to break the tie if desired). The makespan
for C has now been increased by a factor of (1 + 1/6+). Similarly, if the associated
machine for 7 is E, then 7 gets assigned to F. the total cost has gone up by a factor
of 1/(1 - 6).

As 6+ and 6- approach 6, we get the required bound.

REFERENCES

BROWN, G. G. AND R. MCBRIDE 1985. Solving Generalized Networks. Management

Science, 30, 1497-1523.
DANIELS, R. L. AND R.K. SARIN 1989. Single machine scheduling with controllable

processing times and number of jobs tardy. Operations Research, 37, 981-984.
FISHER, M. 1985. An applications oriented guide to lagrangian relaxation. Interfaces, 15,

10-21.

FISHER, M., R. JAIKUMAR, AND L. VAN WASSENHOVE 1986. A multiplier adjustment
mpthod for the generalized assignment problem. Management Science, 32, 1095-1103.

GOTTLIEB, E. AND M.R. RAO 1990a. The generalized assignment problem: valid inequal-
ities and facets. Mathematical Programming, 46, 31-52.

GOTTLIEB, E. AND M.R. RAO 1990b. (1,k) Configuration facets for the generalized
assignment problem. Mathematical Programming, 46, 53-60.

GRAY, A., A. SEIDMANN, AND K.E. STECKE 1988. Tool management in automated
manufacturing: operational issues and decision problems. Technical report, Center for

Manufacturing and Operations Management, University of Rochester.

GR6TSCHEL, M., L. Lov sz, AND A. SCHRIJVER 1988. Geometric Algorithms and Com-
binatorial Optimization. Berlin: Springer.

JACOBS, C. D. 1987. The Vehicle Routing Problem with Backhauls. PhD thesis, Georgia
Institute of Technology.

KHACHIAN, L. 1979. A polynomial time algorithm in linear programming. Soviet Mathe-

matics Doklady, 20, 191-194.
LENSTRA, H., D.B. SHMOYS, AND E. TARDOS 1990. Approximation algorithms for

scheduling unrelated parallel machines. Mathematical Programming, 46, 259-271.
MALAKOOTI, B. AND J. DEVIPRASAD 1989. An interactive multiple criteria approach for

parameter selection in metal cutting. Operations Research, 37, 805-818.

MARTELLO, S. AND P. TOTH 1981. An algorithm for the generalized assignment problem.
In J. Brams (Ed.), Operational Research '81. New York: North Holland.

McBRIDE, R. 1985. Solving embedded generalized network problems. European Journal
of Operational Research, 21, 82-92.

NEMHAUSER, G. L. AND L. A. WOLSEY 1988. Integer and Combinatorial Optimization.
New York: John Wiley.

SCHEDULING MULTIPLE VARIABLE-SPEED MACHINES 29

NULTY, W. G. AND M.A. TRICK 1988. GNO/PC generalized network optimization sys-

tem. O.R. Letters, 2, 101-102.
PHILLIPSON, R. AND A. RAVINDRAN 1979. Applications of mathematical programming to

metal cutting. Mathematical Programming, 23, 1001-1023.

Ross, G. AND R.M. SOLAND 1975. A branch and bound algorithm for the generalized
assignment problem. Mathematical Programming, 8, 91-103.

Ross, G. AND R.M. SOLAND 1977. Modelling faciity location problems as generalized
assignment problems. Management Science, 24, 345-357.

SCHWEITZER, P. AND A. SEIDMANN 1989. Performance optimization and capacity range
analysis for FMS's with distinct multiple job visits to work centers. Technical Report

QM8910, William E. Simon Graduate School of Business Administration, University

of Rochester.
SCHWEITZER, P. AND A. SEIDMANN 1991. Processing rates optimization in flexible man-

ufacturing systems. Management Science, 37, 454-466.
TRICK, M. A. 1991. A linear relaxation heuristic for the generalized assignment problem.

To Appear in Naval Research Logistics.
VAN Roy, T. AND L.A. WOLSEY 1986. Valic inequalities for mixed 0-1 programs. Discrete

Applied Mathematics, 14, 199-213.

VICKSON, R. 1980a. Choosing the job sequence and processing times to minimize total
processing plus flow cost on a single machine. Operations Research, 28, 1155-1167.

VICKSON, R. 1980b. Two single-machine sequencing problems involving controllable job

processing times. AIJE Transactions, 12, 258-262.

